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Abstract In comparison with the Cahn-Hilliard equation, the classic Allen-Cahn equation satisfies the
maximum bound principle (MBP) but fails to conserve the mass along the time. In this paper, we consider
the MBP and corresponding numerical schemes for the modified Allen-Cahn equation, which is formed by
introducing a nonlocal Lagrange multiplier term to enforce the mass conservation. We first study sufficient
conditions on the nonlinear potentials under which the MBP holds and provide some concrete examples of
nonlinear functions. Then we propose first and second order stabilized exponential time differencing schemes
for time integration, which are linear schemes and unconditionally preserve the MBP in the time discrete
level. Convergence of these schemes is analyzed as well as their energy stability. Various two and three
dimensional numerical experiments are also carried out to validate the theoretical results and demonstrate
the performance of the proposed schemes.
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1 Introduction

The classic Allen-Cahn equation [1] and Cahn-Hilliard equation [3] are well-known prototypical gradient
flows with respect to a given free energy functional:

E[u] =
ε2

2
(∇u,∇u) + (F (u), 1) =

∫
Ω

(
ε2

2
|∇u(x, t)|2 + F (u(x, t))

)
dx, (1.1)
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where u(x, t) is the real-valued unknown function, Ω ⊂ Rd (d = 1, 2, 3) is a bounded domain with Lipschitz
boundary ∂Ω, and (·, ·) denotes the usual L2 inner product on Ω with the corresponding L2 norm ‖ · ‖0.
In the phase-field applications [1,3] such as two phases material, u often denotes the phase variable, ε > 0
represents the interface width of the two phases and F (u) is the associated nonlinear potential function.
The Allen-Cahn equation could be viewed as the L2 (non-conservative form) gradient flow of the energy
functional (1.1):

∂tu(x, t) = −δE
δu

= ε2∆u(x, t) + f(u(x, t)), x ∈ Ω, t > 0, (1.2)

and the Cahn-Hilliard equation could be viewed as the H−1 (conservative form) gradient flow of (1.1),

∂tu(x, t) = −∆(−δE
δu

) = −∆(ε2∆u(x, t) + f(u(x, t))), x ∈ Ω, t > 0, (1.3)

where f(u) = −F ′(u). One can equip (1.2) and (1.3) with the periodic or homogeneous Neumann boundary
condition, which is quite popular in the literature. Under either of these boundary conditions, the following
energy dissipation law holds for the Allen-Cahn equation (1.2):

d

dt
E[u(x, t)] = −

∫
Ω

|∂tu(x, t)|2 dx ≤ 0,

and the energy dissipation law for the Cahn-Hilliard equation (1.3) reads

d

dt
E[u(x, t)] = −

∫
Ω

∣∣∣∣∇δEδu
∣∣∣∣2 dx ≤ 0.

The classic Cahn-Hilliard equation (1.3) is a fourth-order equation which naturally satisfies the mass
conservation of the material components, i.e., the total mass

∫
Ω
u(x, t) dx is unchanged during evolution [6,

8,13], however it is often difficult to solve numerically due to the high order spatial derivatives. In contrast,
the Allen-Cahn equation (1.2) is second-order and does not satisfy the mass conservation, but it is relatively
easier to handle numerically. Moreover, the Allen-Cahn equation possesses some important properties such
as maximum bound principle and comparison principle [29]. It is then desirable to also preserve these
properties when numerically simulating the dynamics described by the Allen-Cahn equation.

The maximum bound principle (MBP) has become an important mathematics tool to study the physical
property of the phase field related equations [12], where MBP means that if the initial data and/or the
boundary value are pointwisely bounded by some specific constant in the absolute value, then the absolute
value of the solution to the governing equation is also bounded by the same constant for all time. It is well-
known that the Cahn-Hilliard equation fails to satisfy MBP due to the fourth order bi-harmonic operator.
However, for some models the phase variable would be bounded from above/below by the construction
of the free energy. Recently, for the Cahn-Hilliard equation with logarithmic potential function (requires
the phase variable to be strictly positive), some positivity preserving numerical schemes [4, 9,30] were
proposed based on the stabilized convex splitting technique. However, these schemes are nonlinear due to
the implicit treatment of the nonlinear terms and lead to the need of iterative solver at each time step. In
order to decrease the difficulty of numerical solution process and to preserve the bounds of phase variables
(usually assumed in modeling), the second-order Allen-Cahn equation has been extensively used in many
researches for modeling the dynamical evolution. To further improve the unphysical nonconservative Allen-
Cahn dynamics, an alternative choice is the conservative Allen-Cahn equation [5] inspired by the work
of Rubinstein and Sternberg [31], where the mass conservation is realized by adding a nonlocal Lagrange
multiplier.

During the past decades, there have been many studies devoted to the MBP (or maximum principle)
preserving numerical methods for the classical Allen-Cahn equation. For the spatial discretizations, a partial
list includes the mass-lumping finite element method [39,41], finite difference method [43], finite volume
method [27,28], etc. For the temporal integration, the stabilized linear semi-implicit schemes were shown
to preserve the MBP unconditionally for the first order scheme and conditionally for the second-order
scheme [32,37,38,40]. Some nonlinear second-order MBP-preserving schemes were also constructed for the
Allen-Cahn type equations [21,33]. However, MBP-preserving numerical methods for the conservative Allen-
Cahn equation are still rare. The operator splitting method has been proven to unconditionally preserve the
MBP by adding a different Lagrange multiplier [17,18,26,36,45,46], but it is difficult to obtain the energy
dissipation of the conservative Allen-Cahn equation. For the energy dissipation property, there exist quite
many effective numerical techniques to obtain energy-stable schemes for solving phase-field models, for
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instance, the implicit approach [21], the convex splitting method [4, 9,30], the linear stabilization approach
[35], the invariant energy quadratization (IEQ) method [44] and scalar auxiliary variable (SAV) method
[34]. It is worth noting that Yang and his collaborators have developed the SAV schemes to preserve the
energy stability for the conservative Allen-Cahn model and many of its variants [47, 48,49].

The exponential time differencing (ETD) method has been recently proposed to preserve the MBP
numerically in combination with the stabilizing technique, which was first proposed in [42] to obtain the
numerical energy stability of phase field equations. The ETD schemes are linear schemes based on the
variation-of-constants formula/Duhamel principle with the nonlinear terms approximated by polynomial
interpolations in time, followed by the exact temporal integration [2, 7,15,16]. Therefore, the ETD method
is applicable to a large family of semilinear parabolic equations, especially for those with a stiff linear part
[15,20,22,24,25]. The first and second order stabilized ETD schemes have been applied to the nonlocal
Allen-Cahn equation and proved to be unconditionally MBP-preserving [11]. Then, an abstract framework
on the MBP-preserving stabilized ETD schemes was recently established in [12] for a large class of semilinear
parabolic equations. The main object of the current paper is to develop the ETD schemes preserving the
MBP unconditionally for the conservative Allen-Cahn equation [5,31]. Following the framework in [12], we
derive the conditions on the nonlinear term f under which the conservative Allen-Cahn equation satisfies
MBP. Based on the stabilizing technique, unconditionally MBP-preserving first and second order ETD
schemes will be studied including their convergence analysis and energy stabilities.

The rest of the paper is organized as follows. In Section 2, we review and study some basic assumptions
on the nonlinear operators of conservative Allen-Cahn equation so that the MBP can hold. We also present
some concrete examples of nonlinear functions satisfying the assumptions. In Section 3, an equivalent form
of the conservative Allen-Cahn equation by using the stabilizing technique is derived and proven to admit
a unique solution and satisfy the MBP unconditionally. In Section 4, the first and second order ETD
schemes for time integration of the stabilized system are constructed, which satisfy the discrete MBP and
mass conservation unconditionally. In addition, the convergence and energy stability of the ETD schemes
are analyzed. In Section 5, we carry out two and three dimensional numerical experiments to verify the
convergence and the MBP-preservation of the proposed schemes and to compare the dynamics of the
conservative Allen-Cahn equation with that of the Cahn-Hilliard equation. Finally, some conclusions are
drawn in Section 6.

2 Preliminaries

In this section, we briefly introduce the conservative Allen-Cahn equation [5, 31] and present the conditions
on the nonlinear term under which the MBP holds. We recall the classic Allen-Cahn equation in the form

∂tu(x, t) = ε2∆u(x, t) + f(u(x, t)), x ∈ Ω, t > 0, (2.1)

and the initial value is given by

u(x, 0) = u0(x), x ∈ Ω.

Here, u : Ω × [0,+∞) → R is the unknown function, ∆ : C2(Ω) → C(Ω) is the Laplace operator and
f : R→ R is a continuously differentiable nonlinear function. For the boundary conditions, we either enforce
the periodic boundary condition (only for a rectangular domain Ω =

∏d
i=1(ai, bi)) or the homogeneous

Neumann boundary condition given by

∂u(x, t)

∂n
= 0, x ∈ ∂Ω, t ≥ 0, (2.2)

where n is the outer unit normal vector on ∂Ω. It is well-known from classic analysis [12] that the operator ∆
generates a contraction semigroup {S∆(t) = et∆}t≥0 with respect to the supremum norm on the subspace of
C(Ω) that satisfies such boundary conditions. For any finite terminal time T > 0, we denote ΩT = Ω×(0, T )
and C2,1(ΩT ) = {v(x, t) | v(x, ·) ∈ C1(0, T ), ∀x ∈ Ω; v(·, t) ∈ C2(Ω), ∀ t ∈ (0, T )}.

Note that the mass of u in (2.1) is not conserved, i.e.,
d

dt

∫
Ω

u(x, t) dx 6= 0, one can impose a nonlocal

Lagrange multiplier to conserve the total mass of u, and the resulting conservative Allen-Cahn equation
reads as [31]:

∂tu(x, t) = ε2∆u(x, t) + f̄ [u](x, t), x ∈ Ω, t > 0, (2.3)
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where the revised nonlinear term is defined as

f̄ [u](x, t) = f(u(x, t))− 1

|Ω|

∫
Ω

f(u(y, t)) dy = f(u(x, t))− λ(t), (2.4)

and λ(t) = 1
|Ω|
∫
Ω
f(u(y, t)) dy (|Ω| is the Lebesgue measure of Ω) is the Lagrange multiplier for the mass

conservation and is independent of x.

The modified Allen-Cahn equation (2.3) with nonlocal constraint conserves the mass and satisfies an
energy dissipation law. Taking the L2 inner product with 1 on both sides of (2.3), we obtain

d

dt

∫
Ω

u(x, t) dx = 0 and V (t) =

∫
Ω

u(x, t) dx ≡ V (0) := M, ∀ t > 0, (2.5)

which means the mass is conserved exactly along the time. Taking the L2 inner product with ∂tu(x, t)
on both sides of (2.3), applying the boundary conditions and integration by parts, we obtain the energy
dissipation law as

d

dt
E[u(x, t)] = −

∫
Ω

|∂tu(x, t)|2 dx ≤ 0,

where we have used the identity (f̄ [u], ut) = (f(u), ut) deduced from (2.4) and (2.5).

In order to establish MBP for the conservative Allen-Cahn equation (2.3), as well as its time discretiza-
tions, we first make the following assumptions on the nonlinear function f .

Assumption 1 [31] There exists a constant β > 0 such that

∀w ∈ [−β, β], f(β) ≤ f(w) ≤ f(−β). (2.6)

Remark 1 If the function f only satisfies f(M) ≤ f(w) ≤ f(m) for w ∈ [m,M ] instead of (2.6), by
performing the same affine map as in [12], we still can obtain the MBP of the conservative Allen-Cahn
equation (2.3).

Corollary 1 Under Assumption 1, we can conclude that if u(x, t) ∈ [−β, β] for all x ∈ Ω, then

f(β) ≤ λ(t) =
1

|Ω|

∫
Ω

f(u(y, t)) dy ≤ f(−β).

For the Laplace operator ∆ with the periodic or homogeneous Neumann boundary condition (2.2),
following the analysis in [12], we have the lemma below regarding the semigroup generated by ∆ − α
(α ≥ 0).

Lemma 2.1 The Laplace operator ∆ with the periodic or homogeneous Neumann boundary condition (2.2)
generates a contraction semigroup {S∆(t) = et∆}t≥0 with respect to the supremum norm on C(Ω). More-
over, for α ≥ 0, there holds

‖et(∆−α)u0‖ ≤ e−αt‖u0‖, ∀ t ≥ 0, u0 ∈ C(Ω),

where ‖u0‖ = max
x∈Ω
|u0(x)|.

Next, we introduce the MBP of (2.3) presented in [31].

Theorem 2.1 [31] Given a constant T > 0 and assume u(x, t) ∈ C2,1(ΩT ) ∩ C([0, T ];C1(Ω)) ∩ C(ΩT )
is the (classical) solution to the conservative Allen-Cahn equation (2.3) with the periodic or homogeneous
Neumann boundary condition. If Assumption 1 holds and the initial value satisfies |u(x, 0)| ≤ β for any
x ∈ Ω, we have |u(x, t)| ≤ β for any (x, t) ∈ ΩT .

4



2.1 Examples of the nonlinear function f

In the following, we give some concrete examples of the nonlinear operator satisfying Assumption 1 for the
conservative Allen-Cahn equation (2.3).

Example 1 The quartic double-well (Ginzburg-Landau) potential function

F (u) =
1

4
(u2 − 1)2, f(u) = −F ′(u) = u− u3. (2.7)

Through simple computations, it is easy to see that

f ′(u) > 0, ∀u ∈
(
−
√

3
3 ,
√
3
3

)
,

see Figure 1-(left), which implies that

f(−β) ≥ f
(√

3
3

)
and f(β) ≤ f

(
−
√
3
3

)
.

Consequently, we can find that f satisfies Assumption 1 for any β ∈ [23
√

3,+∞).

Example 2 The Flory-Huggins potential function

F (u) =
θ

2
[(1 + u) ln(1 + u) + (1− u) ln(1− u)]− θc

2
u2, f(u) = −F ′(u) =

θ

2
ln

1− u
1 + u

+ θcu, (2.8)

where θ and θc are two constants satisfying 0 < θ < θc. It is easy to verify that

f ′(u) > 0, ∀u ∈
(
−
√

1− θ
θc
,
√

1− θ
θc

)
,

see Figure 1-(middle), and thus it must hold that

f(−β) ≥ f
(√

1− θ
θc

)
and f(β) ≤ f

(
−
√

1− θ
θc

)
.

Note that f(−1) = +∞ and f(1) = −∞, then we can find that f defined by (2.8) satisfies Assumption 1

for any β ∈ [γ, 1), where γ is the positive root of f(γ) = f
(
−
√

1− θ
θc

)
.

Example 3 The Lennard-Jones potential function

F (u) =
1

3
u−8 − 4

3
u−2, f(u) = −F ′(u) = −8

3
u−3 +

8

3
u−9.

It is easy to verify that
f ′(u) < 0, ∀u ∈ (0, 31/6),

see Figure 1-(right). Thus f satisfies the assumption in Remark 1 for 0 < m < M ≤ 31/6.

Fig. 1 Plots of the nonlinear function f derived from the quartic double-well potential (left), the Flory-Huggins potential
(middle) and the Lennard-Jones potential (right), respectively.
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3 Stabilizing formulation of the conservative Allen-Cahn equation

In this section, we apply the stabilizing technique to obtain an equivalent form of the conservative Allen-
Cahn equation (2.3), and then show that it admits a unique solution and satisfies the MBP from this special
perspective. This form will also play an important role in designing the desired MBP-preserving schemes
in the time discrete setting.

Introducing a stabilizing constant κ > 0, the conservative Allen-Cahn equation (2.3) can be written in
the following equivalent form:

∂tu = Lκu+N [u], x ∈ Ω, t > 0, (3.1)

where

Lκ = ε2∆− κ

and

N [u](x, t) = κu(x, t) + f̄ [u](x, t) = κu(x, t) + f(u(x, t))− 1

|Ω|

∫
Ω

f(u(y, t)) dy, x ∈ Ω. (3.2)

The stabilizing constant κ is chosen such that

κ ≥ max
|η|≤β

|f ′(η)|. (3.3)

Note that (3.3) is well-defined since f is continuously differentiable.

Lemma 3.1 Under Assumption 1 and the choice of stabilizing constant (3.3), we have
(I) ‖N [ζ]‖ ≤ κβ for any ζ ∈ C(Ω) with ‖ζ‖ ≤ β.
(II) ‖N [ζ1]−N [ζ2]‖ ≤ 3κ‖ζ1 − ζ2‖, for any ζj ∈ C(Ω) with ‖ζj‖ ≤ β (j = 1, 2).

Proof From (3.3), we have that for any ζ(x) ∈ C(Ω) with ζ ∈ [−β, β],

0 ≤ κ+ f ′(ζ(x)) ≤ 2κ, ∀x ∈ Ω,

and thus

−κβ + f(−β) ≤ κζ(x) + f(ζ(x)) ≤ κβ + f(β).

Using Assumption 1, according to Corollary 1, we further get for any x ∈ Ω

−κβ ≤ −κβ + f(−β)− 1

|Ω|

∫
Ω

f(ζ(y)) dy ≤ N [ζ](x) ≤ κβ + f(β)− 1

|Ω|

∫
Ω

f(ζ(y)) dy ≤ κβ,

which gives (I). For (II), by the choice of κ, we have that for any x ∈ Ω

|N [ζ1](x)−N [ζ2](x)| ≤ |κζ1(x)− κζ2(x) + f(ζ1(x))− f(ζ2(x))|+
∣∣∣∣ 1

|Ω|

∫
Ω

(f(ζ1(y))− f(ζ2(y)) dy

∣∣∣∣
≤ 2κ|ζ1(x)− ζ2(x)|+ 1

|Ω|

∫
Ω

|f(ζ1(y))− f(ζ2(y))| dy

≤ 2κ|ζ1(x)− ζ2(x)|+ 1

|Ω|

∫
Ω

κ‖ζ1 − ζ2‖ dy

≤ 3κ‖ζ1 − ζ2‖,

which completes the proof. �

Now we can show that (3.1) admits a unique solution and possesses the MBP.

Theorem 3.1 Under Assumption 1, suppose that the initial value of (3.1) satisfies |u0(x)| ≤ β for any
x ∈ Ω (u0 ∈ C(Ω)) and the equation is equipped with the periodic or homogeneous Neumann boundary
condition, then the conservative Allen-Cahn equation (3.1) has a unique solution u ∈ C(ΩT ) which satisfies
|u(x, t)| ≤ β for any (x, t) ∈ ΩT .
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Proof The proof follows the process presented in [12]. For simplicity, let us consider the case of periodic
boundary condition only since the case of homogeneous Neumann condition is similar. Denote Xβ = {g(x) ∈
C(Ω) | ‖g‖ ≤ β and g is Ω−periodic}. For a fixed t0 > 0 and a given v := v(x, t) ∈ C([0, t0];Xβ), we define
w := w(x, t) to be the solution of the following linear problem{

wt = Lκw +N [v], x ∈ Ω, t ∈ (0, t0],

w(x, 0) = u0(x), x ∈ Ω,
(3.4)

with the periodic boundary condition. It is easy to see that w ∈ C(Ωt0) is uniquely defined due to the
linearity of the problem. By Duhamel principle,

w(x, t) = etLκu0(x) +

∫ t

0

e(t−s)LκN [v(x, s)] ds, x ∈ Ω, t ∈ (0, t0]. (3.5)

Taking the supremum norm ‖ · ‖ on both sides, using Lemmas 2.1 and 3.1, we have

‖w(x, t)‖ ≤ e−κt‖u0‖+

∫ t

0

e−κ(t−s)‖N [v](x, s)‖ ds

≤ e−κtβ +

∫ t

0

e−κ(t−s)κβ ds = β, ∀ t ∈ (0, t0],

which shows w ∈ C([0, t0];Xβ).
Therefore, from (3.4), we can define the map A : C([0, t0];Xβ) → C([0, t0];Xβ) as Av = w. In fact,

A is a contraction map for sufficiently small t0. To see this, setting v1, v2 ∈ C([0, t0];Xβ), w1 = Av1 and
w2 = Av2, we have from (3.5) that

w1(x, t)− w2(x, t) =

∫ t

0

e(t−s)Lκ (N [v1](x, s)−N [v2](x, s)) ds.

Lemmas 2.1 and 3.1 then imply

‖w1 − w2‖C([0,t0];C(Ω)) ≤
∫ t0

0

e−κ(t0−s)3κ‖v1 − v2‖C([0,t0];C(Ω)) ds

= 3(1− e−κt0)‖v1 − v2‖C([0,t0];C(Ω)).

Thus, for t0 < κ−1 ln 3
2 such that 3(1 − e−κt0) < 1, A becomes a contraction map. Since Xβ is closed

in C(Ω), we know that C([0, t0];Xβ) is complete with respect to the metric induced by the norm ‖ ·
‖C([0,t0];C(Ω)). Banach’s fixed point theorem would yield that A has a unique fixed point in C([0, t0];Xβ),

which is the solution to the conservative Allen-Cahn equation (3.1). Continuing the iteration, the solution
can be extended to entire time domain [0,+∞), and in particular u ∈ C([0, T ];Xβ) (see [12] for more
discussions). �

4 Exponential time differencing schemes for temporal approximation

In this section, we recall the construction of the exponential time differencing (ETD) schemes for the model
equation (2.3) following the abstract framework in [12]. The first and second order ETD schemes with the
unconditional MBP-preserving property will be discussed based on the equivalent form (3.1) as well as the
convergences and energy stabilities.

4.1 ETD schemes, mass conservation and discrete MBP

Given a time step size τ > 0, we divide the total time by {tn = nτ}n≥0. To establish the ETD schemes for
the conservative Allen-Cahn equation (3.1) on the time interval [tn, tn+1], we start with the exact solution
w(x, s) = u(x, tn + s) satisfying {

∂sw = Lκw +N [w], x ∈ Ω, s ∈ (0, τ ],

w(x, 0) = u(x, tn), x ∈ Ω,
(4.1)
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subject to the periodic or homogeneous Neumann boundary condition. The first order ETD (ETD1) scheme
is then followed by setting N [u(tn + s)] ≈ N [u(tn)] in (4.1) which has a truncation error of O(τ), i.e., for
n ≥ 0 and given u0(x) = u0(x), find un+1 = wn(τ) by solving{

∂sw
n = Lκwn +N [un], x ∈ Ω, s ∈ (0, τ ],

wn(x, 0) = un(x), x ∈ Ω.
(4.2)

Lemma 4.1 (Mass conservation of ETD1). The ETD1 scheme (4.2) conserves the mass unconditionally
at the time discrete level, i.e., for any time step size τ > 0, the ETD1 solution satisfies∫

Ω

un+1 dx =

∫
Ω

un dx = ... =

∫
Ω

u0 dx := M, ∀n ≥ 0.

Proof We just need to show that

∫
Ω

un dx = M implies

∫
Ω

un+1 dx = M . Taking L2 inner product with 1

on both sides of (4.2) and noticing the properties of N [u], we have

d

ds

∫
Ω

wn(x, s) dx + κ

∫
Ω

wn(x, s) dx = κ

∫
Ω

un dx = κM,

which implies the quantity V (s) =

∫
Ω

wn(x, s) dx satisfies the ODE

dV (s)

ds
+ κV (s) = κM, V (0) = M.

It is easy to check V (s) ≡M is the unique solution to the above ODE. Therefore, we have V (τ) = M , that
is,
∫
Ω
un+1(x) dx = M . �

Theorem 4.1 (Discrete MBP of ETD1). Under Assumption 1, the ETD1 scheme (4.2) preserves the
discrete MBP unconditionally, i.e., for any time step size τ > 0, the numerical solution un (n ≥ 1)
obtained by ETD1 (4.2) satisfies ‖un‖ ≤ β if the initial value u0 = u0(x) ∈ C(Ω) satisfies ‖u0‖ ≤ β.

Proof It suffices to prove ‖un+1‖ ≤ β if ‖un‖ ≤ β. From ETD1 (4.2), we have

un+1 = eτLκun +

∫ τ

0

e(τ−s)LκN [un] ds.

Using Lemmas 2.1 and 3.1, for ‖un‖ ≤ β we have

‖un+1‖ ≤ e−κτ‖un‖+

∫ τ

0

e−κ(τ−s)κβ ds

≤ βe−κτ + κβ
1− e−κτ

κ
= β,

which verifies the MBP-preserving property of ETD1 (4.2). �

Next, we consider the second order temporal approximation of the solution to (4.1) by setting

N [u(tn + s)] ≈ (1− s

τ
)N [u(tn)] +

s

τ
N [u(tn+1)],

which has a truncation error of O(τ2). The corresponding second order ETD Runge-Kutta (ETDRK2)
scheme then can be constructed as follows: for n ≥ 0 and given u0 = u0(x), find un+1 = wn(τ) by solving{

∂sw
n(x, s) = Lκwn + (1− s

τ )N [un] + s
τN [ũn+1], x ∈ Ω, s ∈ (0, τ ],

wn(x, 0) = un, x ∈ Ω,
(4.3)

where the periodic or homogeneous Neumann boundary condition is imposed and ũn+1 is generated by the
ETD1 scheme (4.2) from un. It is worth noting that both ETD1 and ETDRK2 schemes are linear.
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Lemma 4.2 (Mass conservation of ETDRK2). The ETDRK2 scheme (4.3) conserves the mass uncondi-
tionally at the time discrete level, i.e., for any time step size τ > 0, the ETDRK2 solution satisfies∫

Ω

un+1 dx =

∫
Ω

un dx = ... =

∫
Ω

u0 dx := M, ∀n ≥ 0.

Proof Similar to the proof in Lemma 4.1, taking the L2 inner product with 1 on both sides of (4.3), we
have

d

ds

∫
Ω

wn(x, s) dx + κ

∫
Ω

wn(x, s) dx = (1− s

τ
)κ

∫
Ω

un dx +
s

τ
κ

∫
Ω

ūn+1 dx = κM, s ∈ (0, τ ],

where we have used

∫
Ω

ūn+1 dx = M from Lemma 4.1. Using the same arguments in Lemma 4.1, we can

obtain that

∫
Ω

un+1 dx =

∫
Ω

wn(x, τ) dx = M . �

Theorem 4.2 (Discrete MBP of ETDRK2). Under Assumption 1, the ETDRK2 scheme (4.3) preserves
the discrete MBP unconditionally, i.e., for any time step size τ > 0, the numerical solution un (n ≥ 1)
obtained by ETDRK2 (4.3) satisfies ‖un‖ ≤ β (n ≥ 1) if the initial value u0 = u0(x) ∈ C(Ω) satisfies
‖u0‖ ≤ β.

Proof Again, it suffices to prove ‖un+1‖ ≤ β if ‖un‖ ≤ β. From Theorem 4.1, we have ‖ũn+1‖ ≤ β. In
addition, (4.3) gives

un+1 = eτLκun +

∫ τ

0

e(τ−s)Lκ
(

(1− s

τ
)N [un] +

s

τ
N [ũn+1]

)
ds.

Using Lemmas 2.1 and 3.1, for ‖un‖ ≤ β we have

‖un+1‖ ≤ e−κτ‖un‖+

∫ τ

0

e−κ(τ−s)
(

(1− s

τ
)‖N [un]‖+

s

τ
‖N [ũn+1]‖

)
ds

≤ e−κτβ +

∫ τ

0

e−κ(τ−s)κβ ds = β,

and the MBP-preserving property of ETDRK2 (4.3) follows. �

Remark 2 Under the analysis framework of [12], Theorem 3.1 on the MBP property can be further extended
to the case when the differential operator is replaced by certain finite dimensional discrete operators in
space, such as discrete approximations of ∆, denoted by ∆h, in which the domain of a function is the set
of all spatial grid points (boundary and interior points), denoted by X. The corresponding space-discrete
equation of (4.1) with ∆h becomes an ordinary differential equation (ODE) system taking the same form:

ut = ε2∆hu+ f̄ [u], x ∈ X∗, t > 0

with u(x, 0) = u0(x), where X∗ = X for the homogeneous Neumann boundary condition and X∗ = X∩Ω+

with Ω
+

=
d∏
i=1

(ai, bi] for the periodic boundary condition. As shown in [12], it is easy to verify that the

central finite difference operator and finite element operator with lumped mass in the space-discrete case
discretizing the Laplace operator ∆ satisfy Lemma 2.1. In our discussion, ∆h can be simply regarded as a
square matrix and the contraction semigroup {S∆h(t) = et∆h} can be viewed as a matrix exponential. Let
Lκ,h = ε2∆h − κI and define the φ-functions as follows:

φ0(z) = ez, φ1(z) =
ez − 1

z
, φ2(z) =

ez − z − 1

z2
.

We then can write down the equivalent integral forms of ETD1 (4.2) and ETDRK2 (4.3) used in practical
computations. The corresponding fully discrete ETD1 scheme of (4.2) is given by

un+1 = φ0(τLκ,h)un + τφ1(τLκ,h)N [un], (4.4)

and the corresponding fully discrete ETDRK2 scheme of (4.3) readsū
n+1 = φ0(τLκ,h)un + τφ1(τLκ,h)N [un],

un+1 = ūn+1 + τφ2(τLκ,h)
(
N [ūn+1]−N [un]

)
.

(4.5)

Note that the corresponding semigroup is given by the matrix exponential SLκ,h(t) = φ0(tLκ,h), which
depends crucially on the choice of the stabilizing coefficient κ.
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Remark 3 As shown in [12], discretization of the spatial operator L by the central finite difference method
or the lumped-mass finite element method satisfies Lemma 2.1 in the space-discrete sense since the result-
ing discrete system gives an M-matrix, and therefore the fully discrete ETD1 and ETDRK2 schemes are
guaranteed to be unconditionally MBP-preserving. However, the coefficient matrix produced by the Fourier
pseudo-spectral method is usually not an M-matrix and then the current analysis framework does not apply.
It still remains an open question whether such requirement (Lemma 2.1) is necessary for the space-discrete
system to possess unconditional preservation of MBP. In addition, the discrete mass conservation holds for
any of the three types of spatial discretizations in the fully discrete ETD1 and ETDRK2 schemes.

4.2 Convergence analysis and energy stability

As an important application of the MBP-preserving property, we now consider the convergence of the ETD1
and ETDRK2 schemes. Since the proof can be concluded in a quite similar way as done in [12], we only
state the main results for the ETD1 (4.2) and ETDRK2 (4.3) schemes. The key point is that the MBP
property ensures a priori L∞ bounds on the numerical solutions, which greatly reduces the difficulty of
convergence analysis.

Theorem 4.3 Under Assumption 1, for a fixed terminal time T > 0, assume that the exact solution u(x, t)
to the conservative Allen-Cahn equation (3.1) belongs to C1([0, T ];C(Ω)) and the initial value u0(x) satisfies
‖u0‖ ≤ β, and let {un}n≥0 be generated by the ETD1 scheme (4.2) with u0 = u0(x), we then have that for
any τ > 0,

‖u(tn)− un‖ ≤ Ce2κt
n

τ, ∀ tn ≤ T,

where the constant C > 0 is independent of τ and κ.

Theorem 4.4 Under Assumption 1, for a fixed terminal time T > 0, assume that the exact solution u(x, t)
to the conservative Allen-Cahn equation (3.1) belongs to C2([0, T ];C(Ω)) and the initial value u0(x) satisfies
‖u0‖ ≤ β, and let {un}n≥0 be generated by the ETDRK2 scheme (4.3) with u0 = u0(x), we then have that
for any τ > 0,

‖u(tn)− un‖ ≤ Ce2κt
n

τ2, ∀ tn ≤ T,

where the constant C > 0 is independent of τ .

As shown in the abstract framework [12], the ETD1 (4.2) and ETDRK2 (4.3) schemes for (3.1) still
enjoy the energy stabilities. Here, we consider the energy (1.1) for the semi-discrete ETD1 and ETDRK2
schemes. The following lemma regarding the energy (1.1) is useful.

Lemma 4.3 Under Assumption 1, for any v(x), w(x) ∈ C(Ω) ∩H1(Ω) satisfying ‖w‖ ≤ β, ‖v‖ ≤ β and∫
Ω
v(x) dx =

∫
Ω
w(x) dx, and the periodic or homogeneous Neumann boundary condition, it holds that for

the energy functional defined by (1.1),

E[v]− E[w] ≤ −(Lκv +N [w], v − w). (4.6)

Proof By direct computation and f(u) = −F ′(u), we find

E[v]− E[w] =
ε2

2

∫
Ω

(
|∇v|2 − |∇w|2

)
dx + (F (v)− F (w), 1)

=− ε2

2
‖∇(v − w)‖20 − (ε2∆v, v − w)−

∫
Ω

∫ 1

0

f(θv + (1− θ)w) dθ(v − w) dx

≤− (Lκv, v − w)− κ(v, v − w)− (f(w), v − w)

−
∫
Ω

∫ 1

0

(f(θv + (1− θ)w)− f(w)) dθ(v − w) dx

≤− (Lκv, v − w)− (f(w) + κw, v − w)− κ(v − w, v − w)

+

∫
Ω

∫ 1

0

θκ(v − w)2 dθ dx

≤− (Lκv, v − w)− (f(w) + κw, v − w)− κ

2
‖v − w‖20, (4.7)
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where we have used the fact that for any θ ∈ [0, 1], there exists some constant θ1 ∈ [0, θ] such that

− (f(θv + (1− θ)w)− f(w)) (v − w) =− f ′(θ1v + (1− θ1)w)θ(v − w)(v − w)

≤ θκ(v − w)2.

Since v and w have equal total mass on Ω, we have from (3.2) that for λ = 1
|Ω|
∫
Ω
f(w(x)) dx,

(f(w) + κw, v − w) = (f(w) + κw − λ, v − w) = (N [w], v − w).

Combining the above identity with (4.7), we finally obtain (4.6). �

Similar to the results in [11], we have the following discrete energy stabilities for the ETD1 and ETDRK2
schemes.

Theorem 4.5 Under Assumption 1, assume initial value u0 = u0(x) ∈ C(Ω)∩H1(Ω) with ‖u0‖ ≤ β, the
numerical solution sequence {un}n≥0 generated by the ETD1 scheme (4.2) satisfies

E[un+1] ≤ E[un], ∀n ≥ 0,

for any τ > 0, i.e., the ETD1 scheme (4.2) is unconditionally energy stable.

Proof For u0 ∈ C(Ω)∩H1(Ω), we have un ∈ C(Ω)∩H1(Ω) (n ≥ 1) so that the energy (1.1) is well-defined.
It suffices to consider the energy changes in the interval [tn, tn+1]. From the mass conservation (Lemma
4.1) and the discrete MBP (Theorem 4.1) of ETD1, we can apply Lemma 4.3 to obtain

E[un+1]− E[un] ≤ −(Lkun+1 +N [un], un+1 − un). (4.8)

From the integral form (4.4) of ETD1 (4.2), using the stabilizing coefficient κ which ensures eτLκ − I is
invertible [11], we have

N [un] = (eτLκ − I)−1Lκ
(
un+1 − eτLκun

)
and

Lκun+1 +N [un] = (eτLκ − I)−1Lκ
(
un+1 − eτLκun

)
= Lκ(un+1 − un) + (eτLk − I)−1Lκ

(
un+1 − un

)
.

Plugging the above identity into (4.8), we arrive at

E[un+1]− E[un] ≤ −(T (un+1 − un), un+1 − un),

where T = Lκ+(eτLk−I)−1Lκ is positive-definite [11] (Lκ here is understood as the self-adjoint expansion
of ε2∆ − κ with respect to the boundary conditions) by looking at the function s + (eτs − 1)−1s =
seτs/(eτs − 1) > 0 (s ∈ (−∞, 0)). Hence, we conclude that E[un+1] ≤ E[un]. �

For the ETDRK2 scheme (4.3), we do not have the energy decaying property, but the following energy
bounds could be established [12].

Theorem 4.6 Under the assumptions of Theorem 4.4, the numerical solutions {un}n≥0 of the ETDRK2
scheme (4.3) satisfy

E[un] ≤ E[u0] + C, tn ≤ T,

for any τ ∈ (0, 1], where the constant C is independent of τ , i.e., the energy is uniformly bounded.

Proof. The proof can be proceeded in the same way as in [11,12] and is omitted here for brevity. �

Remark 4 Though we only present the convergence results for the semi-discrete schemes (4.2) and (4.3),
these error estimates can be similarly generalized to the fully discrete cases (4.4) and (4.5) by using the
discrete MBP-preserving properties. As in the proofs of Theorems 4.5 and 4.6, only L2 inner products and
the maximum bounds of the numerical solutions are used essentially, thus these results also hold for the
fully discrete forms of ETD1 (4.4) and ETDRK2 (4.5) under suitable spatial discretizations.
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5 Numerical experiments

In this section, we present various two-dimensional and three-dimensional numerical examples to demon-
strate the accuracies and the MBP preserving properties of the proposed stabilized ETD schemes. In all
examples, we set the computational domain Ω = [−0.5, 0.5]2 in two dimensions or Ω = [−0.5, 0.5]3 in three
dimensions. The spatial discretization is realized by the central finite difference method and the products
of matrix exponentials with vectors are implemented by the fast Fourier transform (FFT). Moreover, the
ETDRK2 (4.5) (or (4.3)) scheme is used for all examples while the ETD1 scheme (4.4) (or (4.2)) is only
tested in the temporal convergence test due to its low accuracy. For simplicity, we only test the case of
periodic boundary condition, and that of the homogeneous Neumann boundary condition is quite similar.
Uniform mesh distribution in each direction is adopted, i.e. spatial mesh size hx = hy = h = 1

N in two
dimensions and hx = hy = hz = h = 1

N in three dimensions, where h is the mesh size and N is the number
of grid points in each direction. We denote the corresponding set of discrete grid points as Ωh.

5.1 Convergence tests

We consider the conservative Allen-Cahn equation (2.3) in two dimensions with ε = 0.01 and f defined by
(2.7), i.e., the double-well potential function. The initial value is given by

u0(x, y) = cos(2πx) cos(2πy), (x, y) ∈ Ω.

The terminal time is set to be T = 1 and the stabilizing parameter is chosen as κ = 3.
First, by setting the spatial mesh size to be very fine he = 1/2048 such that the spatial discretization

error could be ignored, we test the convergence of the proposed schemes in time with various time step
sizes. Let uτ,h(t) be the numerical solution (understood on the grid points) at time t obtained by the
numerical schemes with the mesh size h and the time step τ . To quantify the errors, the ‘exact’ or say
‘benchmark’ solution is produced by the ETDRK2 scheme with a very fine time step size τe = T/1024. The
error function at time T = 1 of the numerical solution is denoted as

eτ,h(x, y, t = T ) := uτ,h(x, y, t = T )− uτe,he(x, y, t = T ), (x, y) ∈ Ωh.

The L2 norm and the L∞ norm of the error function eτ,he(t = T ) along the uniform refinement of the
time step size τ and corresponding convergence rates for the fully discrete ETD1 and ETDRK2 schemes
are reported in Table 1, where the expected temporal convergence rates (1 for ETD1 and 2 for ETDRK2)
are clearly observed.

Table 1 Temporal errors eτ,he(t = T ) in the L2 and L∞ norms as well as corresponding convergence rates
for the fully discrete ETD1 and ETDRK2 schemes.

τ
ETD1 ETDRK2

L2 Error Rate L∞ Error Rate L2 Error Rate L∞ Error Rate

T/4 5.4448e-2 - 9.1469e-2 - 1.3276e-2 - 2.3360e-2 -

T/8 2.9502e-2 0.88 5.0611e-2 0.85 4.0335e-3 1.71 7.1919e-3 1.69

T/16 1.5278e-2 0.94 2.6529e-2 0.93 1.1189e-3 1.85 2.0072e-3 1.84

T/32 7.6819e-3 0.99 1.3427e-2 0.98 2.9501e-4 1.92 5.3073e-4 1.91

T/64 3.7574e-3 1.03 6.5901e-3 1.02 7.5584e-5 1.96 1.3616e-4 1.96

T/128 1.7630e-3 1.09 3.0974e-3 1.08 1.8933e-5 1.99 3.4127e-5 1.99

T/256 7.5760e-4 1.21 1.3322e-3 1.21 4.5387e-6 2.06 8.1836e-6 2.06

Next, we test the convergence with respect to the spatial mesh size h by fixing the temporal step size
τ = τe so that the temporal error could be ignored. The numerical solution obtained by the ETDRK2
scheme with h = 1/2048 is treated as the benchmark for computing the errors of the numerical solutions
obtained with various mesh sizes. The numerical errors along the spatial mesh refinement and corresponding
convergence rates are presented in Table 2. It is observed that the convergence rates with respect to h are
clearly of second order, which is consistent with the central finite difference stencil as expected.
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Table 2 Spatial errors eτe,h(t = T ) in the L2 and L∞ norms as well as corresponding convergence rates for
the fully discrete ETDRK2 scheme.

1/h L2 Error Rate L∞ Error Rate

64 3.1368e-4 - 9.9889e-4 -

128 9.2116e-5 1.76 3.0942e-4 1.69

256 2.4023e-5 1.93 8.3780e-5 188

512 6.0713e-6 1.98 2.1247e-5 1.97

1024 1.5220e-6 1.99 5.3332e-6 1.99

5.2 MBP tests and comparisons

We now numerically simulate long-time phase separation processes governed by the conservative Allen-
Cahn equation (2.3) and investigate the preservation of discrete MBP. Note that the ETDRK2 scheme is
used for all following simulations. We start with the same initial configuration at t = 0, which is generated
by taking u0 = 0.9 rand(·), where rand(·) represents the random distribution between −1 and 1. Here,
we consider two different potential functions, i.e., the double-well potential function (2.7) and the Flory-
Huggins potential function (2.8).

5.2.1 Two-dimensional coarsening

We simulate the conservative Allen-Cahn equation (2.3) with ε = 0.01 in two dimensions, and also compare
them with the results obtained by solving the classic Cahn-Hilliard equation with the ETDRK2 scheme as
proposed in [24]. The spatial mesh size is chosen to be h = 1/1024.

We first take f to be the double-well potential function (2.7) and the stabilizing coefficient is set to be
κ = 3 correspondingly. Figure 1 shows the configurations of the numerical solution at t = 1, 10, 50, 1800
for the conservative Allen-Cahn equation with different time step sizes τ = 0.1 and τ = 1, respectively.
The corresponding evolutions of the mass, the supremum norm and the energy of the numerical solutions
are shown in Figure 2, where the red line is the theoretical bound β = 2

3

√
3. We observe that the mass

is conserved very well and the energy decays monotonically. Moreover, the discrete MBP is preserved
numerically for the conservative Allen-Cahn equation and is close to ‖u‖ = 1 in time which is the bounding
constant of the classic Allen-Cahn equation (1.2). Two simulations produced by different time step sizes
give us overall similar evolution processes. The results of the Cahn-Hilliard equation with τ = 0.1 are
presented for t = 1, 10, 50, 300 in Figure 3, where the almost same steady state as that of the conservative
Allen-Cahn equation is reached in the end. On the other hand, it is also easy to see that the evolution of the
phase structure in the conservative Allen-Cahn equation is slower than that in the Cahn-Hilliard equation.

Fig. 1 Simulated phase structures at t = 1, 10, 50, 1800 (from left to right) with different time step sizes for the conservative
Allen-Cahn equation (2.3) with the double-well potential in two dimensions. Top: τ = 0.1; bottom: τ = 1.
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Fig. 2 Evolutions of the mass (left), the supremum norm (middle) and the energy (right) with different time step sizes for
the conservative Allen-Cahn equation (2.3) with the double-well potential in two dimensions. Top: τ = 0.1; bottom: τ = 1.

Fig. 3 Simulated phase structures at t = 1, 10, 50, 300 (from left to right) with τ = 0.1 for the Cahn-Hilliard equation
(1.3) with the double-well potential in two dimensions.

Next we take f to be the Flory-Huggins potential function (2.8) with the parameters θ = 0.8 and θc = 1.6

in (2.8). According to Example 2, the positive root of f(γ) = f
(
−
√

1− θ
θc

)
is γ = 0.986783601343632

(numerical value) and the stabilizing coefficient is thus chosen as κ = 28.87. Figure 4 shows the configura-
tions of the numerical solution at t = 1, 10, 50, 2200 for the conservative Allen-Cahn equation with τ = 0.1
and τ = 1. The corresponding evolutions of the mass, supremum norm and energy are presented in Figure
5, where the red line is β = γ ≈ 0.9868. We observe that the mass is conserved and the energy decays
monotonically. Moreover, the discrete MBP is preserved perfectly for the conservative Allen-Cahn equation
where the solution is always located in the interval [−β, β]. Two simulations produced by different time
step sizes again give us overall similar evolution processes. The results of the Cahn-Hilliard equation with
τ = 0.1 are illustrated for t = 1, 10, 50, 800 in Figure 6, where the almost same steady state as that of the
conservative Allen-Cahn equation is reached but with a shorter time as expected.

5.2.2 Three-dimensional coarsening

Now we perform some three-dimensional simulations for the conservative Allen-Cahn equation (2.3) with
ε = 0.01. We use the spatial mesh size h = 1/256 and the time step size τ = 0.1.

We first simulate the case of the double-well potential function (2.7) and set the stabilizing coefficient
κ = 3 as before. Figure 7 shows the configuration of the numerical solution at t = 1, 30, 200, 4000. The
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Fig. 4 Simulated phase structures at t = 1, 10, 50, 2200 (from left to right) with different time step sizes of the conservative
Allen-Cahn equation (2.3) with the Flory-Huggins potential in two dimensions. Top: τ = 0.1; bottom: τ = 1.

Fig. 5 Evolutions of the mass (left), the supremum norm (middle) and the energy (right) for the conservative Allen-Cahn
equation (2.3) with the Flory-Huggins potential in two dimensions. Top: τ = 0.1; bottom: τ = 1.

Fig. 6 Simulated phase structures at t = 1, 10, 50, 800 (from left to right) with τ = 0.1 for the Cahn-Hilliard equation
(1.3) with the Flory-Huggins potential in two dimensions.

corresponding dynamics of the mass, the supremum norm and the energy are plotted in Figure 8, where
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the red line is β = 2
3

√
3. We observe that the mass is conserved and the energy decays monotonically along

the time. Moreover, the MBP of the conservative Allen-Cahn equation is numerically preserved very well.

Fig. 7 Simulated phase structures at t = 1, 30, 200, 4000 (from left to right and top to bottom) with τ = 0.1 for the
conservative Allen-Cahn equation (2.3) with the double-well potential in three dimensions.
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Fig. 8 Evolutions of the mass (left), the supremum norm (middle) and the energy (right) for the conservative Allen-Cahn
equation (2.3) with the double-well potential in three dimensions.

Next we solve the case of the Flory-Huggins potential function (2.8) in which the parameters are
still θ = 0.8 and θc = 1.6, and the stabilizing coefficient is again set to be κ = 28.87. Figure 9 shows
the configuration of the numerical solution at t = 1, 30, 200, 4000 and Figure 10 depicts how the mass,
supremum norm and energy evolve in time, where the red line is β = γ ≈ 0.9868. We again observe that
the mass is conserved, the energy decays monotonically, and the MBP for the conservative Allen-Cahn
equation (2.3) is numerically well-preserved.
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Fig. 9 Simulated phase structures at t = 1, 30, 200, 4000 (from left to right and top to bottom) with τ = 0.1 for the
conservative Allen-Cahn equation (2.3) with the Flory-Huggins potential in three dimensions.

Fig. 10 Evolutions of the mass (left), the supremum norm (middle) and the energy (right) for the conservative Allen-Cahn
equation (2.3) with the Flory-Huggins potential in three dimensions.

5.3 The expanding bubble test

In this example, we numerically simulate the evolution of an expanding bubble in three dimensions, governed
by the conservative Allen-Cahn equation (2.3) with ε = 0.01 and either the double-well potential function
(2.7) or the Flory-Huggins potential function (2.8). The initial discontinuous configuration is given by

u0(x, y, z) =

{
−0.5, x2 + y2 + z2 < 0.252,

0.5, otherwise,

which is illustrated in Figure 11. The radius of the bubble is expected to continuously increase until a
steady state is reached. Again, we test the ETDRK2 scheme with the time step size τ = 0.01 and the
spatial mesh size h = 1/256.
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Fig. 11 Initial configurations in the expanding bubble example. Left: the iso-surface; right: the cross-section view at x = 0
and y = 0.

We first adopt the double-well potential function (2.7) with the stabilizing coefficient κ = 3. Figure 12
presents the expanding process of the bubble, in which the iso-surfaces (u = 0) are plotted at the time
t = 1, 10, 100 respectively. Figure 13 shows the evolutions of the bubble radius, the mass, the supremum
norm and the energy of the numerical solutions, where the red line is β = 2

3

√
3. The radius of the bubble

starts with 0.25 and gradually increases, and finally reaches a steady value around 0.4028. It is easy to find
that the mass is conserved, the energy decays monotonically and the MBP is well preserved numerically
along the time.

Fig. 12 Simulated expanding bubbles at t = 1, 10, 100 (from left to right) with τ = 0.01 for the conservative Allen-Cahn
equation (2.3) with the double-well potential in three dimensions.

Next we take the Flory-Huggins potential function (2.8) with the stabilizing coefficient κ = 28.87 to
simulate the evolution of the bubble. The iso-surface views of the simulated bubble at t = 1, 4 and 100 are
given in Figure 14. Figure 15 presents the evolution of the bubble radius, the mass, the supremum norm
and the energy of the numerical solutions, where the red line is β = 0.9868 · · · . The radius of the bubble
starts with 0.25 and gradually increases to 0.4012 and reaches a steady state within a similar time period
as the case of double-well potential. Again the mass is conserved, the energy decays monotonically and the
MBP is well preserved numerically along the time.

6 Conclusions

In this paper we have developed and analyzed unconditional MBP-preserving linear numerical schemes
(up to second order in time), the stabilized ETD1 and ETDRK2 schemes, for the conservative Allen-
Cahn equation with nonlocal constraint. We generalize the framework of [12] on the MBP of semilinear
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Fig. 13 Evolutions of the radius (top-left), the mass (top-right), the supremum norm (bottom-left) and the energy (bottom-
right) for the expanding bubble governed by the conservative Allen-Cahn equation (2.3) with the double-well potential in
three dimensions.

Fig. 14 Simulated expanding bubbles at t = 1, 4 and 100 (from left to right) with τ = 0.01 for the conservative Allen-Cahn
equation (2.3) with the Flory-Huggins potential in three dimensions.

parabolic equations and corresponding ETD schemes to the conservative Allen-Cahn equation satisfying
Assumption 1. The choice of the stabilizing coefficient plays an important role on designing unconditional
MBP-preserving schemes and we note that the theoretically required stabilizing coefficient κ is obviously
larger (especially for the case of Flory-Huggins potential) than that for the classic Allen-Cahn equation [11,
12]. It remains an open question whether a more delicate analysis can relieve such requirement. In addition,
only the Laplace operator ∆ is considered in this paper, which generates contraction semigroup in C(Ω)
with suitable boundary conditions. However, many more general operators such as the second-order elliptic
differential operator, the nonlocal diffusion operator [10] and the fractional Laplace operator [14] possess
the similar property [12], and further studies are still needed on whether the above MBP analysis and the
MBP-preserving schemes can be extended to those cases for the conservative Allen-Cahn equation.

It is also worth pointing out that, apart from the ETD methods, the integrating factor (IF) method
is also an effective method to preserve the MBP conditionally or unconditionally, such as Runge-Kutta
integrating factor (IFRK) schemes [19,23]. They would be ideal potential candidates for designing higher-
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Fig. 15 Evolutions of the radius (top-left), the mass (top-right), the supremum norm (bottom-left) and the energy (bottom-
right) for the expanding bubble governed by the conservative Allen-Cahn equation (2.3) with the Flory-Huggins potential
in three dimensions.

order accurate MBP-preserving numerical schemes. At the same time, extensions to the cases of complex-
valued, vector-valued and matrix-valued conservative Allen-Cahn type dynamics are also subject to future
investigation.
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